Zusammenfassung
Bereits lange vor der Möglichkeit einer molekulargenetischen Untersuchung war es Ziel
der Neurologie, Methoden zu entwickeln, die eine möglichst frühzeitige Diagnose und
prognostische Vorhersage bei Morbus Huntington ermöglichen. Die Entwicklung von verlässlichen
Indikatoren für frühe neuronale Funktionsbeeinträchtigungen und von möglichen Endpunkten
in Studien zur Prüfung neuroprotektiv wirksamer Substanzen hat an Intensität und Dringlichkeit
gewonnen. Neuere Daten, insbesondere aus der PREDICT-Studie, bestätigen das Auftreten
objektivierbarer Veränderungen Jahre vor Auftritt motorischer Symptome. In dieser
Übersichtsarbeit soll ein Überblick über den derzeitigen Stand der Forschung zur Gewinnung
objektiver Verlaufsparameter gegeben werden. Behandelt werden klinisch-neurologische,
psychiatrische, neuropsychologische und neurophysiologische Befunde, Motorikuntersuchungen,
bildgebende Verfahren (MRT, fMRT, PET und SPECT), Magnetresonanzspektroskopie (MRS),
statistische und mathematische Ansätze sowie laborchemische Ansätze. Zusammenfassend
lassen sich mithilfe der verschiedenen Techniken erste Veränderungen bei den Mutationsträgern
bereits 10–20 Jahre vor dem Auftreten von diagnosesichernden motorischen Symptomen
nachweisen. Zusätzlich zeigen sich in aktuellen Untersuchungen überraschend hochregulierte
Prozesse bei Probanden, welche weit entfernt sind vom vermuteten Erkrankungsbeginn
(> 10 Jahre). Es ist noch nicht geklärt, ob es sich dabei um einen Teil der Pathologie
oder um Kompensationsmechanismen handelt. Die Autoren schlagen vor, aufgrund dieser
Befunde in zumindest 2 Phasen bei prämanifesten Mutationsträgern zu unterscheiden,
eine erste frühe Phase, bei der (im Vergleich zu Kontrollen) hochregulierte Prozesse
im Vordergrund stehen, und eine zweite, spätere Phase, bei der Defizite das Bild beherrschen,
die mittels funktioneller Untersuchungstechniken detektierbar werden.
Abstract
For a long time – even before genetic testing became available – neurologists have
been searching for reliable markers or tests to predict the diagnosis of Huntington's
disease (HD) before the first clinical symptoms appear. Today the development of indicators
which allow reliable detection of disease progression is becoming increasingly important
in the context of clinical neuroprotective studies. New data which derive from studies
like PREDICT-HD confirm the occurrence of objective changes many years before first
motor symptoms are detectable. In this review we give an overview over the various
methods that are currently under clinical testing to evaluate disease onset and progression.
We focus on clinical tests as well as psychiatric, neuropsychiatric, neurophysiological
tests, and tests using MRI, fMRI, PET or SPECT as well as blood tests. In summary,
it is possible with various methods to detect subtle changes in HD gene carriers 10–20
years before occurrence of motor signs that establish the clinical diagnosis of manifest
HD. Interestingly, in a number of studies functional up-regulation in specific brain
areas was found in HD gene carriers who were more than 10 years beyond the expected
disease onset. So far it is unclear whether this is part of the disease cascade or
whether this reflects compensating mechanisms. However, on the basis of these findings
the authors suggest to divide the preclinical phase of HD into at least two parts:
a very early phase with predominantly up-regulated processes followed by a later phase
with predominant deficits in functional investigations compared to controls.
Schlüsselwörter
Huntington - Biomarker - Diagnostik
Keywords
Huntington's disease - Biomarkers - diagnostics
Literatur
- 1 OMIM 143 100: HUNTINGTON DISEASE; HD.
- 2
Przuntek H, Steigerwald A.
Epidemiologic study of Huntington disease in the catchment area of the Wurzburg University
Neurologic Clinic with special reference to the Lower Franconia district.
Nervenarzt.
1987;
58
424-427
- 3
Butterfield D A, Oeswein J Q, Markesbery W R.
Electron spin resonance study of membrane protein alterations in erythrocytes in Huntington's
disease.
Nature.
1977;
267
453-455
- 4
Przuntek H, Kraus P H, Vigenschow H. et al .
Electron spin resonance of erythrocytes in Huntington's disease.
J Neurol.
1984;
231
162-164
- 5
Kraus P H, Vigenschow H, Przuntek H.
Spin label study of red blood cell membranes in Huntington's disease.
Eur Neurol.
1986;
25
61-66
- 6
Vigenschow H, Przuntek H, Lawaczeck R.
On the exchange of H2O / D2O molecules across membranes of erythrocyte ghosts from
patients with Huntington's disease and from normal individuals.
J Neurol.
1984;
231
54-55
- 7
Schroeder F, Goetz I E, Roberts E.
Membrane anomalies in Huntington's disease fibroblasts.
J Neurochem.
1984;
43
526-539
- 8
Gohlich G, Kuhn W, Hohn H. et al .
Huntington's disease: biochemical prediction by determination of GABA synthesis of
cultured fibroblasts.
J Neurol.
1984;
231
50-51
- 9
Gray P N, Dana S L.
GABA synthesis by cultured fibroblasts obtained from persons with Huntington's disease.
J Neurochem.
1979;
33
985-992
- 10
Hamel E, Goetz I E, Roberts E.
Glutamic acid decarboxylase and gamma-aminobutyric acid in Huntington's disease fibroblasts
and other cultured cells, determined by a [3H]muscimol radioreceptor assay.
J Neurochem.
1981;
37
1032-1038
- 11
Bird E D, Iversen L L.
Huntington's chorea. Post-mortem measurement of glutamic acid decarboxylase, choline
acetyltransferase and dopamine in basal ganglia.
Brain.
1974;
97
457-472
- 12
Perry T L, Hansen S, Kloster M.
Huntington's chorea. Deficiency of gamma-aminobutyric acid in brain.
N Engl J Med.
1973;
288
337-342
- 13
Reynolds G P, Pearson S J.
Decreased glutamic acid and increased 5-hydroxytryptamine in Huntington's disease
brain.
Neurosci Lett.
1987;
78
233-238
- 14
Spokes E G.
Neurochemical alterations in Huntington's chorea: a study of post-mortem brain tissue.
Brain.
1980;
103
179-210
- 15
Kish S J, Shannak K, Hornykiewicz O.
Elevated serotonin and reduced dopamine in subregionally divided Huntington's disease
striatum.
Ann Neurol.
1987;
22
386-389
- 16
Lange H, Thorner G, Hopf A. et al .
Morphometric studies of the neuropathological changes in choreatic diseases.
J Neurol Sci.
1976;
28
401-425
- 17
Graveland G A, Williams R S, DiFiglia M.
Evidence for degenerative and regenerative changes in neostriatal spiny neurons in
Huntington's disease.
Science.
1985;
227
770-773
- 18
Martin J B, Gusella J F.
Huntington's disease. Pathogenesis and management.
N Engl J Med.
1986;
315
1267-1276
- 19
Seizinger B R, Liebisch D C, Kish S J. et al .
Opioid peptides in Huntington's disease: alterations in prodynorphin and proenkephalin
system.
Brain Res.
1986;
378
405-408
- 20 MacMillan J C, Quarrell O WJ.
The neurobiology of Huntington's disease. In: Harper PS Huntington's disease. Second Edition. London; WP Saunders 1996: 317-357
- 21
Turjanski N, Weeks R, Dolan R. et al .
Striatal D1 and D2 receptor binding in patients with Huntington's disease and other
choreas. A PET study.
Brain.
1995;
118
689-696
- 22
Weeks R A, Piccini P, Harding A E. et al .
Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington's
disease.
Ann Neurol.
1996;
40
49-54
- 23
Young A B, Greenamyre J T, Hollingsworth Z. et al .
NMDA receptor losses in putamen from patients with Huntington's disease.
Science.
1988;
241
981-983
- 24
Albin R L, Young A B, Penney J B. et al .
Abnormalities of striatal projection neurons and N-methyl-D-aspartate receptors in
presymptomatic Huntington's disease.
N engl J Med.
1990;
322
1293-1298
- 25
Cha J H, Kosinski C M, Kerner J A. et al .
Altered brain neurotransmitter receptors in transgenic mice expressing a portion of
an abnormal human huntington disease gene.
PNAS (USA).
1998;
95
6480-6485
- 26
Kosinski C M, Cha J H, Young A B. et al .
Huntington chorea. Animal models reveal new hypotheses for pathophysiology and therapy.
Nervenarzt.
1999;
70
878-888
- 27
Gusella J F, Wexler N S, Conneally P M. et al .
A polymorphic DNA marker genetically linked to Huntington's disease.
Nature.
1983;
306
234-238
- 28
The Huntington's Disease Collaborative Research Group .
A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's
disease chromosomes.
Cell.
1993;
72
971-983
- 29
Andrich J, Arning L, Wieczorek S. et al .
Huntington's disease as caused by 34 CAG repeats.
Mov Disord.
2008;
- 30
Semaka A, Creighton S, Warby S. et al .
Predictive testing for Huntington disease: interpretation and significance of intermediate
alleles.
Clin Genet.
2006;
70
283-294
- 31
Nance M A, Myers R H.
Juvenile onset Huntington's disease – clinical and research perspectives.
Ment Retard Dev Disabil Res Rev.
2001;
7
153-157
- 32
Leeflang E P, Tavare S, Marjoram P. et al .
Analysis of germline mutation spectra at the Huntington's disease locus supports a
mitotic mutation mechanism.
Hum Mol Gen.
1999;
8
173-183
- 33
Yoon S R, Dubeau L, deYoung M. et al .
Huntington disease expansion mutations in humans can occur before meiosis is completed.
PNAS (USA).
2003;
100
8834-8838
- 34
Henley S M, Bates G P, Tabrizi S J.
Biomarkers for neurodegenerative diseases.
Curr Opin Neurol.
2005;
18
698-705
- 35
Shaw L M, Korecka M, Clark C M. et al .
Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics.
Nat Rev Drug Discov.
2007;
6
295-303
- 36
Huntington Study Group .
Unified Huntington's Disease Rating Scale: reliability and consistency.
Mov Disord.
1996;
11
136-142
- 37
Siesling S, van Vugt J P, Zwinderman K A. et al .
Unified Huntington's disease rating scale: a follow up.
Mov Disord.
1998;
13
915-919
- 38
Snowden J S, Craufurd D, Griffiths H L. et al .
Awareness of involuntary movements in Huntington disease.
Arch Neurol.
1998;
55
801-805
- 39
Hoth K F, Paulsen J S, Moser D J. et al .
Patients with Huntington's disease have impaired awareness of cognitive, emotional,
and functional abilities.
J Clin Exp Neuropsychol.
2007;
29
365-376
- 40
Kirkwood S C, Siemers E, Hodes M E. et al .
Subtle changes among presymptomatic carriers of the Huntington's disease gene.
J Neurol Neurosurg Psychiatry.
2000;
69
773-779
- 41
de Boo G, Tibben A, Hermans J. et al .
Subtle involuntary movements are not reliable indicators of incipient Huntington's
disease.
Mov Disord.
1998;
13
96-99
- 42
Hamilton M.
A rating scale for depression.
J Neurol Neurosurg Psychiatry.
1960;
23
56-62
- 43
Hogarth P, Kayson E, Kieburtz K. et al .
Interrater agreement in the assessment of motor manifestations of Huntington's disease.
Mov Disord.
2005;
20
293-297
- 44
Aylward E H.
Change in MRI striatal volumes as a biomarker in preclinical Huntington's disease.
Brain Res bull.
2007;
72
152-158
- 45
Rosas H D, Feigin A S, Hersch S M.
Using advances in neuroimaging to detect, understand, and monitor disease progression
in Huntington's disease.
NeuroRx.
2004;
1
263-272
- 46
Saft C, Lauter T, Kraus P H. et al .
Dose-dependent improvement of myoclonic hyperkinesia due to valproic acid in eight
Huntington's disease patients: a case series.
BMC Neurology.
2006;
6
11
- 47
Marder K, Zhao H, Myers R H. et al .
Rate of functional decline in Huntington's disease. Huntington Study Group.
Neurology.
2000;
54
452-458
- 48
Leroi I, Michalon M.
Treatment of the psychiatric manifestations of Huntington's disease: a review of the
literature.
Can J Psychiatry.
1998;
43
933-940
- 49
Folstein S, Abbott M H, Chase G A. et al .
The association of affective disorder with Huntington's disease in a case series and
in families.
Psychol Med.
1983;
13
537-542
- 50
Kirkwood S C, Siemers E, Viken R. et al .
Longitudinal personality changes among presymptomatic Huntington disease gene carriers.
Neuropsychiatry Neuropsychol Behav Neurol.
2002;
15
192-197
- 51
Craufurd D, Thompson J C, Snowden J S.
Behavioral changes in Huntington disease.
Neuropsychiatry Neuropsychol Behav Neurol.
2001;
14
219-226
- 52
Shiwach R S, Norbury C G.
A controlled psychiatric study of individuals at risk for Huntington's disease.
Br J Psychiatry.
1994;
165
500-505
- 53
Paulsen J S, Hayden M, Stout J C. et al .
Preparing for preventive clinical trials: the Predict-HD study.
Arch Neurol.
2006;
63
883-890
- 54
Duff K, Paulsen J S, Beglinger L J. et al .
Psychiatric symptoms in Huntington's disease before diagnosis: the predict-HD study.
Biol Psychiatry.
2007;
62
1341-1346
- 55
Paulsen J S, Zhao H, Stout J C. et al .
Clinical markers of early disease in persons near onset of Huntington's disease.
Neurology.
2001;
57
658-662
- 56
Hahn-Barma V, Deweer B, Durr A. et al .
Are cognitive changes the first symptoms of Huntington's disease? A study of gene
carriers.
J Neurol Neurosurg Psychiatry.
1998;
64
172-177
- 57
Lyle O E, Gottesman I I.
Premorbid psychometric indicators of the gene for Huntington's disease.
J Consult Clin Psychol.
1977;
45
1011-1022
- 58
Witjes-Ane M N, Mertens B, van Vugt J P. et al .
Longitudinal evaluation of „presymptomatic” carriers of Huntington's disease.
J Neuropsychiatry Clin Neurosci.
2007;
19
310-317
- 59
Solomon A C, Stout J C, Johnson S A. et al .
Verbal episodic memory declines prior to diagnosis in Huntington's disease.
Neuropsychologia.
2007;
45
1767-1776
- 60
Lemiere J, Decruyenaere M, Evers-Kiebooms G. et al .
Cognitive changes in patients with Huntington's disease (HD) and asymptomatic carriers
of the HD mutation – a longitudinal follow-up study.
J Neurol.
2004;
251
935-942
- 61
Ho A K, Sahakian B J, Brown R G. et al .
Profile of cognitive progression in early Huntington's disease.
Neurology.
2003;
61
1702-1706
- 62
Peinemann A, Schuller S, Pohl C. et al .
Executive dysfunction in early stages of Huntington's disease is associated with striatal
and insular atrophy: a neuropsychological and voxel-based morphometric study.
J Neurol Sci.
2005;
239
11-19
- 63
Kassubek J, Juengling F D, Ecker D. et al .
Thalamic atrophy in Huntington's disease co-varies with cognitive performance: a morphometric
MRI analysis.
Cereb Cortex.
2005;
15
846-853
- 64
Bamford K A, Caine E D, Kido D K. et al .
A prospective evaluation of cognitive decline in early Huntington's disease: functional
and radiographic correlates.
Neurology.
1995;
45
1867-1873
- 65
Bamford K A, Caine E D, Kido D K. et al .
Clinical-pathologic correlation in Huntington's disease: a neuropsychological and
computed tomography study.
Neurology.
1989;
39
796-801
- 66
Harris G J, Aylward E H, Peyser C E. et al .
Single photon emission computed tomographic blood flow and magnetic resonance volume
imaging of basal ganglia in Huntington's disease.
Arch Neurol.
1996;
53
316-324
- 67
Campodonico J R, Aylward E, Codori A M. et al .
When does Huntington's disease begin?.
J Int Neuropsychol Soc.
1998;
4
467-473
- 68
Jernigan T L, Salmon D P, Butters N. et al .
Cerebral structure on MRI, Part II: Specific changes in Alzheimer's and Huntington's
diseases.
Biol Psychiatry.
1991;
29
68-81
- 69
Snowden J, Craufurd D, Griffiths H. et al .
Longitudinal evaluation of cognitive disorder in Huntington's disease.
J Int Neuropsychol Soc.
2001;
7
33-44
- 70
Beglinger L J, Nopoulos P C, Jorge R E. et al .
White matter volume and cognitive dysfunction in early Huntington's disease.
Cogn Behav Neurol.
2005;
18
102-107
- 71
Aylward E H, Anderson N B, Bylsma F W. et al .
Frontal lobe volume in patients with Huntington's disease.
Neurology.
1998;
50
252-258
- 72
Montoya A, Price B H, Menear M. et al .
Brain imaging and cognitive dysfunctions in Huntington's disease.
J Psychiatry Neurosci.
2006;
31
21-29
- 73
Feigin A, Ghilardi M F, Huang C. et al .
Preclinical Huntington's disease: compensatory brain responses during learning.
Ann Neurol.
2006;
59
53-59
- 74
Hasselbalch S G, Oberg G, Sorensen S A. et al .
Reduced regional cerebral blood flow in Huntington's disease studied by SPECT.
J Neurol Neurosurg Psychiatry.
1992;
55
1018-1023
- 75
Tanahashi N, Meyer J S, Ishikawa Y. et al .
Cerebral blood flow and cognitive testing correlate in Huntington's disease.
Arch Neurol.
1985;
42
1169-1175
- 76
Berent S, Giordani B, Lehtinen S. et al .
Positron emission tomographic scan investigations of Huntington's disease: cerebral
metabolic correlates of cognitive function.
Ann Neurol.
1988;
23
541-546
- 77
Kuwert T, Lange H W, Langen K J. et al .
Cortical and subcortical glucose consumption measured by PET in patients with Huntington's
disease.
Brain.
1990;
113
1405-1423
- 78
Brandt J, Folstein S E, Wong D F. et al .
D2 receptors in Huntington's disease: positron emission tomography findings and clinical
correlates.
J Neurol Neurosurg Psychiatry.
1990;
2
20-27
- 79
Backman L, Robins-Wahlin T B, Lundin A. et al .
Cognitive deficits in Huntington's disease are predicted by dopaminergic PET markers
and brain volumes.
Brain.
1997;
120)
2207-2217
- 80
Ginovart N, Lundin A, Farde L. et al .
PET study of the pre- and post-synaptic dopaminergic markers for the neurodegenerative
process in Huntington's disease.
Brain.
1997;
120
503-514
- 81
Lawrence A D, Weeks R A, Brooks D J. et al .
The relationship between striatal dopamine receptor binding and cognitive performance
in Huntington's disease.
Brain.
1998;
121
1343-1355
- 82
Rosas H D, Salat D H, Lee S Y. et al .
Cerebral cortex and the clinical expression of Huntington's disease: complexity and
heterogeneity.
Brain.
2008;
131
1057-1068
- 83
Wolf R C, Sambataro F, Vasic N. et al .
Altered frontostriatal coupling in pre-manifest Huntington's disease: effects of increasing
cognitive load.
Eur J Neurol.
2008;
15
1180-1190
- 84
Wolf R C, Sambataro F, Vasic N. et al .
Aberrant connectivity of lateral prefrontal networks in presymptomatic Huntington's
disease.
Exp Neurol.
2008;
213
137-144
- 85
Sax D S, Powsner R, Kim A. et al .
Evidence of cortical metabolic dysfunction in early Huntington's disease by single-photon-emission
computed tomography.
Mov Disord.
1996;
11
671-677
- 86
Wolf R C, Vasic N, Schonfeldt-Lecuona C. et al .
Dorsolateral prefrontal cortex dysfunction in presymptomatic Huntington's disease:
evidence from event-related fMRI.
Brain.
2007;
130
2845-2857
- 87
Paulsen J S.
Functional imaging in Huntington's disease.
Exp Neurol.
2009;
216
272-277
- 88
Brinkman R R, Mezei M M, Theilmann J. et al .
The likelihood of being affected with Huntington disease by a particular age, for
a specific CAG size.
Am J Hum Genet.
1997;
60
1202-1210
- 89
Wexler N S, Lorimer J, Porter J. et al .
Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington's
disease age of onset.
PNAS (USA).
2004;
101
3498-3503
- 90
Langbehn D R, Brinkman R R, Falush D. et al .
A new model for prediction of the age of onset and penetrance for Huntington's disease
based on CAG length.
Clin Genet.
2004;
65
267-277
- 91
Harris G J, Codori A M, Lewis R F. et al .
Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons
at-risk for Huntington's disease.
Brain.
1999;
122
1667-1678
- 92
Aylward E H, Sparks B F, Field K M. et al .
Onset and rate of striatal atrophy in preclinical Huntington disease.
Neurology.
2004;
63
66-72
- 93
Ranen N G, Stine O C, Abbott M H. et al .
Anticipation and instability of IT-15 (CAG)n repeats in parent-offspring pairs with
Huntington disease.
Am J Hum Genet.
1995;
57
593-602
- 94
Andresen J M, Gayan J, Cherny S S. et al .
Replication of twelve association studies for Huntington's disease residual age of
onset in large Venezuelan kindreds.
J Med Genet.
2007;
44
44-50
- 95
Arning L, Monte D, Hansen W. et al .
ASK1 and MAP2K6 as modifiers of age at onset in Huntington's disease.
J Mol Med.
2008;
86
485-490
- 96
Arning L, Kraus P H, Valentin S. et al .
NR2A and NR2B receptor gene variations modify age at onset in Huntington disease.
Neurogenetics.
2005;
6
25-28
- 97
Arning L, Saft C, Wieczorek S. et al .
NR2A and NR2B receptor gene variations modify age at onset in Huntington disease in
a sex-specific manner.
Hum Gen.
2007;
122
175-182
- 98
Saft C, Andrich J E, Brune N. et al .
Apolipoprotein E genotypes do not influence the age of onset in Huntington's disease.
J Neurol Neurosurg Psychiatry.
2004;
75
1692-1696
- 99
Weydt P, Soyal S M, Gellera C. et al .
The gene coding for PGC-1alpha modifies age at onset in Huntington's Disease.
Mol Neurodegener.
2009;
4
3
- 100
Taherzadeh-Fard E, Saft C, Andrich J. et al .
PGC-1alpha as modifier of onset age in Huntington disease.
Mol Neurodegener.
2009;
4
10
- 101
Penney Jr J B, Vonsattel J P, MacDonald M E. et al .
CAG repeat number governs the development rate of pathology in Huntington's disease.
Ann Neurol.
1997;
41
689-692
- 102
Sanchez-Pernaute R, Kunig G, del Barrio Alba A. et al .
Bradykinesia in early Huntington's disease.
Neurology.
2000;
54
119-125
- 103
Ravina B, Romer M, Constantinescu R. et al .
The relationship between CAG repeat length and clinical progression in Huntington's
disease.
Mov Disord.
2008;
23
1223-1227
- 104
Rosenblatt A, Liang K Y, Zhou H. et al .
The association of CAG repeat length with clinical progression in Huntington disease.
Neurology.
2006;
66
1016-1020
- 105
Berardelli A, Noth J, Thompson P D. et al .
Pathophysiology of chorea and bradykinesia in Huntington's disease.
Mov Disord.
1999;
14
398-403
- 106
Noth J, Friedemann H H, Podoll K. et al .
Absence of long latency reflexes to imposed finger displacements in patients with
Huntington's disease.
Neurosci Lett.
1983;
35
97-100
- 107
Noth J, Engel L, Friedemann H H. et al .
Evoked potentials in patients with Huntington's disease and their offspring. I. Somatosensory
evoked potentials.
Electroencephalogr Clin Neurophysiol.
1984;
59
134-141
- 108
Kuwert T, Noth J, Scholz D. et al .
Comparison of somatosensory evoked potentials with striatal glucose consumption measured
by positron emission tomography in the early diagnosis of Huntington's disease.
Mov Disord.
1993;
8
98-106
- 109
Ellenberger Jr C, Petro D J, Ziegler S B.
The visually evoked potential in Huntington disease.
Neurology.
1978;
28
95-97
- 110
Hennerici M, Homberg V, Lange H W.
Evoked potentials in patients with Huntington's disease and their offspring. II. Visual
evoked potentials.
Electroencephalogr Clin Neurophysiol.
1985;
62
167-176
- 111
Beenen N, Buttner U, Lange H W.
The diagnostic value of eye movement recordings in patients with Huntington's disease
and their offspring.
Electroencephalogr Clin Neurophysiol.
1986;
63
119-127
- 112
Beste C, Saft C, Andrich J. et al .
Error processing in Huntington's disease.
PLoS ONE.
2006;
1
e86
- 113
Beste C, Saft C, Andrich J. et al .
Response inhibition in Huntington's disease – a study using ERPs and sLORETA.
Neuropsychologia.
2008;
46
1290-1297
- 114
Beste C, Saft C, Andrich J. et al .
Time processing in Huntington's disease: a group-control study.
PLoS ONE.
2007;
2
e1263
- 115
Beste C, Saft C, Yordanova J. et al .
Functional compensation or pathology in cortico-subcortical interactions in preclinical
Huntington's disease?.
Neuropsychologia.
2007;
45
2922-2930
- 116
Beste C, Saft C, Gunturkun O. et al .
Increased cognitive functioning in symptomatic Huntington's disease as revealed by
behavioral and event-related potential indices of auditory sensory memory and attention.
J Neurosci.
2008;
28
11695-11702
- 117
Hefter H, Homberg V, Lange H W. et al .
Impairment of rapid movement in Huntington's disease.
Brain.
1987;
110
585-612
- 118
Garcia Ruiz P J, Hernandez J, Cantarero S. et al .
Bradykinesia in Huntington's disease. A prospective, follow-up study.
J Neurol.
2002;
249
437-440
- 119
van Vugt J P, Piet K K, Vink L J. et al .
Objective assessment of motor slowness in Huntington's disease: clinical correlates
and 2-year follow-up.
Mov Disord.
2004;
19
285-297
- 120
van Vugt J P, Siesling S, Piet K K. et al .
Quantitative assessment of daytime motor activity provides a responsive measure of
functional decline in patients with Huntington's disease.
Mov Disord.
2001;
16
481-488
- 121
Reilmann R, Kirsten F, Quinn L. et al .
Objective assessment of progression in Huntington's disease: a 3-year follow-up study.
Neurology.
2001;
57
920-924
- 122
Rao A K, Quinn L, Marder K S.
Reliability of spatiotemporal gait outcome measures in Huntington's disease.
Mov Disord.
2005;
20
1033-1037
- 123
Saft C, Andrich J, Meisel N M. et al .
Assessment of complex movements reflects dysfunction in Huntington's disease.
J Neurol.
2003;
250
1469-1474
- 124
Saft C, Andrich J, Meisel N M. et al .
Assessment of simple movements reflects impairment in Huntington's disease.
Mov Disord.
2006;
21
1208-1212
- 125
Saft C, Andrich J, Meisel N M. et al .
Congruent deterioration of complex and simple movements in patients with Huntington's
disease.
J Neural Transm.
2004;
68
97-104
- 126
Andrich J, Saft C, Ostholt N. et al .
Assessment of simple movements and progression of Huntington's disease.
J Neurol Neurosurg Psychiatry.
2007;
78
405-407
- 127
Andrich J, Saft C, Ostholt N. et al .
Complex movement behaviour and progression of Huntington's disease.
Neurosci Lett.
2007;
416
272-274
- 128
Hinton S C, Paulsen J S, Hoffmann R G. et al .
Motor timing variability increases in preclinical Huntington's disease patients as
estimated onset of motor symptoms approaches.
J Int Neuropsychol Soc.
2007;
13
539-543
- 129
Michell A W, Goodman A O, Silva A H. et al .
Hand tapping: A simple, reproducible, objective marker of motor dysfunction in Huntington's
disease.
J Neurol.
2008;
- 130
Paulsen J S, Langbehn D R, Stout J C. et al .
Detection of Huntington's disease decades before diagnosis: The Predict HD study.
J Neurol Neurosurg Psychiatry.
2007;
- 131
Smith M A, Brandt J, Shadmehr R.
Motor disorder in Huntington's disease begins as a dysfunction in error feedback control.
Nature.
2000;
403
544-549
- 132
Blekher T, Johnson S A, Marshall J. et al .
Saccades in presymptomatic and early stages of Huntington disease.
Neurology.
2006;
67
394-399
- 133
Hicks S L, Robert M P, Golding C V. et al .
Oculomotor deficits indicate the progression of Huntington's disease.
Prog Brain Res.
2008;
171
555-558
- 134
Becker W, Jurgens R, Kassubek J. et al .
Eye-head coordination in moderately affected Huntington's Disease patients: do head
movements facilitate gaze shifts?.
Exp Brain Res.
2009;
192
97-112
- 135
Wild E J, Tabrizi S J.
Predict-HD and the future of therapeutic trials.
Lancet Neurol.
2006;
5
724-725
- 136
Huckman M S, Fox J, Topel J.
The validity of criteria for the evaluation of cerebral atrophy by computed tomography.
Radiology.
1975;
116
85-92
- 137
Stober T, Wussow W, Schimrigk K.
Bicaudate diameter – the most specific and simple CT parameter in the diagnosis of
Huntington's disease.
Neuroradiology.
1984;
26
25-28
- 138
Aylward E H, Codori A M, Barta P E. et al .
Basal ganglia volume and proximity to onset in presymptomatic Huntington disease.
Arch Neurol.
1996;
53
1293-1296
- 139
Aylward E H, Codori A M, Rosenblatt A. et al .
Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington's disease.
Mov Disord.
2000;
15
552-560
- 140
Aylward E H, Brandt J, Codori A M. et al .
Reduced basal ganglia volume associated with the gene for Huntington's disease in
asymptomatic at-risk persons.
Neurology.
1994;
44
823-828
- 141
Kipps C M, Duggins A J, Mahant N. et al .
Progression of structural neuropathology in preclinical Huntington's disease: a tensor
based morphometry study.
J Neurol Neurosurg Psychiatry.
2005;
76
650-655
- 142
Thieben M J, Duggins A J, Good C D. et al .
The distribution of structural neuropathology in pre-clinical Huntington's disease.
Brain.
2002;
125
1815-1828
- 143
Rosas H D, Hevelone N D, Zaleta A K. et al .
Regional cortical thinning in preclinical Huntington disease and its relationship
to cognition.
Neurology.
2005;
65
745-747
- 144
Nopoulos P, Magnotta V A, Mikos A. et al .
Morphology of the cerebral cortex in preclinical Huntington's disease.
Am J Psychiatry.
2007;
164
1428-1434
- 145
Paulsen J S, Magnotta V A, Mikos A E. et al .
Brain structure in preclinical Huntington's disease.
Biol Psychiatry.
2006;
59
57-63
- 146
Rosas H D, Tuch D S, Hevelone N D. et al .
Diffusion tensor imaging in presymptomatic and early Huntington's disease: Selective
white matter pathology and its relationship to clinical measures.
Mov Disord.
2006;
21
1317-1325
- 147
Reading S A, Yassa M A, Bakker A. et al .
Regional white matter change in pre-symptomatic Huntington's disease: a diffusion
tensor imaging study.
Psychiatry Res.
2005;
140
55-62
- 148
Kloppel S, Draganski B, Golding C V. et al .
White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic
Huntington's disease.
Brain.
2008;
131
196-204
- 149
Kloppel S, Chu C, Tan G C. et al .
Automatic detection of preclinical neurodegeneration: presymptomatic Huntington disease.
Neurology.
2009;
72
426-431
- 150
Aylward E H, Li Q, Stine O C. et al .
Longitudinal change in basal ganglia volume in patients with Huntington's disease.
Neurology.
1997;
48
394-399
- 151
Brandt J, Bylsma F W, Aylward E H. et al .
Impaired source memory in Huntington's disease and its relation to basal ganglia atrophy.
J Clin Exp Neuropsychol.
1995;
17
868-877
- 152
Harris G J, Pearlson G D, Peyser C E. et al .
Putamen volume reduction on magnetic resonance imaging exceeds caudate changes in
mild Huntington's disease.
Ann Neurol.
1992;
31
69-75
- 153
Rosas H D, Koroshetz W J, Chen Y I. et al .
Evidence for more widespread cerebral pathology in early HD: an MRI-based morphometric
analysis.
Neurology.
2003;
60
1615-1620
- 154
Ruocco H H, Lopes-Cendes I, Li L M. et al .
Striatal and extrastriatal atrophy in Huntington's disease and its relationship with
length of the CAG repeat.
Brazilian Journal of Medical and Biological Research = Revista brasileira de pesquisas
medicas e biologicas / Sociedade Brasileira de Biofisica [et al].
2006;
39
1129-1136
- 155
Starkstein S E, Brandt J, Bylsma F. et al .
Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic
resonance imaging study.
Neuroradiology.
1992;
34
487-489
- 156
Bohanna I, Georgiou-Karistianis N, Hannan A J. et al .
Magnetic resonance imaging as an approach towards identifying neuropathological biomarkers
for Huntington's disease.
Brain Res Rev.
2008;
- 157
Muhlau M, Weindl A, Wohlschlager A M. et al .
Voxel-based morphometry indicates relative preservation of the limbic prefrontal cortex
in early Huntington disease.
J Neural Transm.
2007;
114
367-372
- 158
Mascalchi M, Lolli F, Della Nave R. et al .
Huntington disease: volumetric, diffusion-weighted, and magnetization transfer MR
imaging of brain.
Radiology.
2004;
232
867-873
- 159
Jech R, Klempir J, Vymazal J. et al .
Variation of selective gray and white matter atrophy in Huntington's disease.
Mov Disord.
2007;
22
1783-1789
- 160
Vonsattel J P, Myers R H, Stevens T J. et al .
Neuropathological classification of Huntington's disease.
J Neuropath Exp Neurol.
1985;
44
559-577
- 161
Kassubek J, Juengling F D, Kioschies T. et al .
Topography of cerebral atrophy in early Huntington's disease: a voxel based morphometric
MRI study.
J Neurol Neurosurg Psychiatry.
2004;
75
213-220
- 162
Douaud G, Gaura V, Ribeiro M J. et al .
Distribution of grey matter atrophy in Huntington's disease patients: a combined ROI-based
and voxel-based morphometric study.
NeuroImage.
2006;
32
1562-1575
- 163
Muhlau M, Wohlschlager A M, Gaser C. et al .
Voxel-based morphometry in individual patients: a pilot study in early Huntington
disease.
Ajnr.
2009;
30
539-543
- 164
Douaud G, Behrens T E, Poupon C. et al .
In vivo evidence for the selective subcortical degeneration in Huntington's disease.
NeuroImage.
2009;
46
958-966
- 165
Henley S M, Frost C, MacManus D G. et al .
Increased rate of whole-brain atrophy over 6 months in early Huntington disease.
Neurology.
2006;
67
694-696
- 166
Henley S M, Wild E J, Hobbs N Z. et al .
Whole-brain atrophy as a measure of progression in premanifest and early Huntington's
disease.
Mov Disord.
2009;
24
932-936
- 167
Kassubek J, Landwehrmeyer G B, Ecker D. et al .
Global cerebral atrophy in early stages of Huntington's disease: quantitative MRI
study.
Neuroreport.
2004;
15
363-365
- 168
Muhlau M, Gaser C, Wohlschlager A M. et al .
Striatal gray matter loss in Huntington's disease is leftward biased.
Mov Disord.
2007;
22
1169-1173
- 169
Halliday G M, McRitchie D A, Macdonald V. et al .
Regional specificity of brain atrophy in Huntington's disease.
Exp Neurol.
1998;
154
663-672
- 170
Rosas H D, Liu A K, Hersch S. et al .
Regional and progressive thinning of the cortical ribbon in Huntington's disease.
Neurology.
2002;
58
695-701
- 171
Seppi K, Schocke M F, Mair K J. et al .
Diffusion-weighted imaging in Huntington's disease.
Mov Disord.
2006;
21
1043-1047
- 172
Weaver K E, Richards T L, Liang O. et al .
Longitudinal diffusion tensor imaging in Huntington's Disease.
Exp Neurol.
2009;
216
525-529
- 173
Vandenberghe W, Demaerel P, Dom R. et al .
Diffusion-weighted versus volumetric imaging of the striatum in early symptomatic
Huntington disease.
J Neurol.
2009;
256
109-114
- 174
Alexander G E, DeLong M R, Strick P L.
Parallel organization of functionally segregated circuits linking basal ganglia and
cortex.
Ann Rev Neurosci.
1986;
9
357-381
- 175
Tobin A J, Signer E R.
Huntington's disease: the challenge for cell biologists.
Trends Cell Biol.
2000;
10
531-536
- 176
Taylor-Robinson S D, Weeks R A, Bryant D J. et al .
Proton magnetic resonance spectroscopy in Huntington's disease: evidence in favour
of the glutamate excitotoxic theory.
Mov Disord.
1996;
11
167-173
- 177
Jenkins B G, Rosas H D, Chen Y C. et al .
1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat
numbers.
Neurology.
1998;
50
1357-1365
- 178
Martin W R, Wieler M, Hanstock C C.
Is brain lactate increased in Huntington's disease?.
J Neurol Sci.
2007;
263
70-74
- 179
Harms L, Meierkord H, Timm G. et al .
Decreased N-acetyl-aspartate / choline ratio and increased lactate in the frontal
lobe of patients with Huntington's disease: a proton magnetic resonance spectroscopy
study.
J Neurol Neurosurg Psychiatry.
1997;
62
27-30
- 180
Hoang T Q, Bluml S, Dubowitz D J. et al .
Quantitative proton-decoupled 31P MRS and 1H MRS in the evaluation of Huntington's
and Parkinson's diseases.
Neurology.
1998;
50
1033-1040
- 181
Sanchez-Pernaute R, Garcia-Segura J M, del Barrio Alba A. et al .
Clinical correlation of striatal 1H MRS changes in Huntington's disease.
Neurology.
1999;
53
806-812
- 182
Bender A, Auer D P, Merl T. et al .
Creatine supplementation lowers brain glutamate levels in Huntington's disease.
J Neurol.
2005;
252
36-41
- 183
Tabrizi S J, Blamire A M, Manners D N. et al .
High-dose creatine therapy for Huntington disease: a 2-year clinical and MRS study.
Neurology.
2005;
64
1655-1656
- 184
Tabrizi S J, Blamire A M, Manners D N. et al .
Creatine therapy for Huntington's disease: clinical and MRS findings in a 1-year pilot
study.
Neurology.
2003;
61
141-142
- 185
Reynolds Jr N C, Prost R W, Mark L P.
Heterogeneity in 1H-MRS profiles of presymptomatic and early manifest Huntington's
disease.
Brain Res.
2005;
1031
82-89
- 186
Lodi R, Schapira A H, Manners D. et al .
Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian
atrophy.
Ann Neurol.
2000;
48
72-76
- 187
Saft C, Zange J, Andrich J. et al .
Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's
disease.
Mov Disord.
2005;
20
674-679
- 188
van Oostrom J C, Sijens P E, Roos R A. et al .
1H magnetic resonance spectroscopy in preclinical Huntington disease.
Brain Res.
2007;
1168
67-71
- 189
Hennenlotter A, Schroeder U, Erhard P. et al .
Neural correlates associated with impaired disgust processing in pre-symptomatic Huntington's
disease.
Brain.
2004;
127
1446-1453
- 190
Sprengelmeyer R, Young A W, Calder A J. et al .
Loss of disgust. Perception of faces and emotions in Huntington's disease.
Brain.
1996;
119
1647-1665
- 191
Reading S A, Dziorny A C, Peroutka L A. et al .
Functional brain changes in presymptomatic Huntington's disease.
Ann Neurol.
2004;
55
879-883
- 192
Paulsen J S, Zimbelman J L, Hinton S C. et al .
fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington's disease.
AJNR.
2004;
25
1715-1721
- 193
Zimbelman J L, Paulsen J S, Mikos A. et al .
fMRI detection of early neural dysfunction in preclinical Huntington's disease.
J Int Neuropsychol Soc.
2007;
13
758-769
- 194
Saft C, Schuttke A, Beste C. et al .
fMRI reveals altered auditory processing in manifest and premanifest Huntington's
disease.
Neuropsychologia.
2008;
46
1279-1289
- 195
Aron A R, Schlaghecken F, Fletcher P C. et al .
Inhibition of subliminally primed responses is mediated by the caudate and thalamus:
evidence from functional MRI and Huntington's disease.
Brain.
2003;
126
713-723
- 196
Voermans N C, Petersson K M, Daudey L. et al .
Interaction between the human hippocampus and the caudate nucleus during route recognition.
Neuron.
2004;
43
427-435
- 197
Gavazzi C, Nave R D, Petralli R. et al .
Combining functional and structural brain magnetic resonance imaging in Huntington
disease.
J Comput Assist Tomogr.
2007;
31
574-580
- 198
Dierks T, Linden D E, Hertel A. et al .
Multimodal imaging of residual function and compensatory resource allocation in cortical
atrophy: a case study of parietal lobe function in a patient with Huntington's disease.
Psychiatry Res.
1999;
90
67-75
- 199
Georgiou-Karistianis N, Sritharan A, Farrow M. et al .
Increased cortical recruitment in Huntington's disease using a Simon task.
Neuropsychologia.
2007;
45
1791-1800
- 200
Clark V P, Lai S, Deckel A W.
Altered functional MRI responses in Huntington's disease.
Neuroreport.
2002;
13
703-706
- 201
Kim J S, Reading S A, Brashers-Krug T. et al .
Functional MRI study of a serial reaction time task in Huntington's disease.
Psychiatry Res.
2004;
131
23-30
- 202
Thiruvady D R, Georgiou-Karistianis N, Egan G F. et al .
Functional connectivity of the prefrontal cortex in Huntington's disease.
J Neurol Neurosurg Psychiatry.
2007;
78
127-133
- 203
Beste C, Schuttke A, Konrad C. et al .
Functional Connectivity during auditory processing in Huntington's disease.
J Psychphysiol.
2008;
22
195-201
- 204
Saft C, Schutte A, Beste C. et al .
Altered auditory sensory processing in premanifest Huntington's disease: Are there
different phases in premanifest Huntington's disease?.
J Neurol Neurosurg Psychiatry.
2008;
79
A11
- 205
Kuhl D E, Phelps M E, Markham C H. et al .
Cerebral metabolism and atrophy in Huntington's disease determined by 18FDG and computed
tomographic scan.
Ann Neurol.
1982;
12
425-434
- 206
Kuwert T, Ganslandt T, Jansen P. et al .
Influence of size of regions of interest on PET evaluation of caudate glucose consumption.
J Comput Assist Tomogr.
1992;
16
789-794
- 207
Kuwert T, Lange H W, Boecker H. et al .
Striatal glucose consumption in chorea-free subjects at risk of Huntington's disease.
J Neurol.
1993;
241
31-36
- 208
Young A B, Penney J B, Starosta-Rubinstein S. et al .
PET scan investigations of Huntington's disease: cerebral metabolic correlates of
neurological features and functional decline.
Ann Neurol.
1986;
20
296-303
- 209
Young A B, Penney J B, Starosta-Rubinstein S. et al .
Normal caudate glucose metabolism in persons at risk for Huntington's disease.
Arch Neurol.
1987;
44
254-257
- 210
Grafton S T, Mazziotta J C, Pahl J J. et al .
Serial changes of cerebral glucose metabolism and caudate size in persons at risk
for Huntington's disease.
Arch Neurol.
1992;
49
1161-1167
- 211
Hagglund J, Aquilonius S M, Eckernas S A. et al .
Dopamine receptor properties in Parkinson's disease and Huntington's chorea evaluated
by positron emission tomography using 11C-N-methyl-spiperone.
Acta Neurol Scand.
1987;
75
87-94
- 212
Pavese N, Andrews T C, Brooks D J. et al .
Progressive striatal and cortical dopamine receptor dysfunction in Huntington's disease:
a PET study.
Brain.
2003;
126
1127-1135
- 213
Antonini A, Leenders K L, Spiegel R. et al .
Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene
carriers and patients with Huntington's disease.
Brain.
1996;
119
2085-2095
- 214
van Oostrom J C, Maguire R P, Verschuuren-Bemelmans C C. et al .
Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease.
Neurology.
2005;
65
941-943
- 215
Bartenstein P, Weindl A, Spiegel S. et al .
Central motor processing in Huntington's disease. A PET study.
Brain.
1997;
120
1553-1567
- 216
Boecker H, Ceballos-Baumann A, Bartenstein P. et al .
Sensory processing in Parkinson's and Huntington's disease: investigations with 3D
H(2)(15)O-PET.
Brain.
1999;
122
1651-1665
- 217
Pavese N, Gerhard A, Tai Y F. et al .
Microglial activation correlates with severity in Huntington disease: a clinical and
PET study.
Neurology.
2006;
66
1638-1643
- 218
Tai Y F, Pavese N, Gerhard A. et al .
Microglial activation in presymptomatic Huntington's disease gene carriers.
Brain.
2007;
130
1759-1766
- 219
Feigin A, Tang C, Ma Y. et al .
Thalamic metabolism and symptom onset in preclinical Huntington's disease.
Brain.
2007;
130
2858-2867
- 220
Borovecki F, Lovrecic L, Zhou J. et al .
Genome-wide expression profiling of human blood reveals biomarkers for Huntington's
disease.
PNAS (USA).
2005;
102
11023-11028
- 221
Runne H, Kuhn A, Wild E J. et al .
Analysis of potential transcriptomic biomarkers for Huntington's disease in peripheral
blood.
PNAS (USA).
2007;
104
14424-14429
- 222
Benn C L, Fox H, Bates G P.
Optimisation of region-specific reference gene selection and relative gene expression
analysis methods for pre-clinical trials of Huntington's disease.
Mol Neurodegener.
2008;
3
17
- 223
Strand A D, Aragaki A K, Shaw D. et al .
Gene expression in Huntington's disease skeletal muscle: a potential biomarker.
Hum Mol Gen.
2005;
14
1863-1876
- 224
Zabel C, Chamrad D C, Priller J. et al .
Alterations in the mouse and human proteome caused by Huntington's disease.
Mol Cell Proteomics.
2002;
1
366-375
- 225
Petersen A, Gil J, Maat-Schieman M L. et al .
Orexin loss in Huntington's disease.
Hum Mol Gen.
2005;
14
39-47
- 226
Bjorkqvist M, Petersen A, Nielsen J. et al .
Cerebrospinal fluid levels of orexin – A are not a clinically useful biomarker for
Huntington disease.
Clin Genet.
2006;
70
78-79
- 227
Aziz N A, van der Burg J M, Landwehrmeyer G B. et al .
Weight loss in Huntington disease increases with higher CAG repeat number.
Neurology.
2008;
71
1506-1513
- 228
Valenza M, Carroll J B, Leoni V. et al .
Cholesterol biosynthesis pathway is disturbed in YAC128 mice and is modulated by huntingtin
mutation.
Hum Mol Gen.
2007;
16
2187-2198
- 229
Valenza M, Leoni V, Tarditi A. et al .
Progressive dysfunction of the cholesterol biosynthesis pathway in the R6 / 2 mouse
model of Huntington's disease.
Neurobiol Dis.
2007;
28
133-142
- 230
Leoni V, Mariotti C, Tabrizi S J. et al .
Plasma 24S-hydroxycholesterol and caudate MRI in pre-manifest and early Huntington's
disease.
Brain.
2008;
131
2851-2859
- 231
Tsang T M, Woodman B, McLoughlin G A. et al .
Metabolic characterization of the R6 / 2 transgenic mouse model of Huntington's disease
by high-resolution MAS 1H NMR spectroscopy.
J Proteome Res.
2006;
5
483-492
- 232
Bjorkqvist M, Petersen A, Bacos K. et al .
Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6 / 2 transgenic
mouse model of Huntington's disease.
Hum Mol Gen.
2006;
15
1713-1721
- 233
Aziz N A, Pijl H, Frolich M. et al .
Increased hypothalamic-pituitary-adrenal axis activity in Huntington's disease.
J Clin Endocrinol Metab.
2009;
94
1223-1228
- 234
Saleh N, Moutereau S, Durr A. et al .
Neuroendocrine disturbances in Huntington's disease.
PLoS ONE.
2009;
4
e4962
- 235
Politis M, Pavese N, Tai Y F. et al .
Hypothalamic involvement in Huntington's disease: an in vivo PET study.
Brain.
2008;
131
2860-2869
- 236
Weydt P, Pineda V V, Torrence A E. et al .
Thermoregulatory and metabolic defects in Huntington's disease transgenic mice implicate
PGC-1alpha in Huntington's disease neurodegeneration.
Cell Metab.
2006;
4
349-362
- 237
Bjorkqvist M, Leavitt B R, Nielsen J E. et al .
Cocaine- and amphetamine-regulated transcript is increased in Huntington disease.
Mov Disord.
2007;
22
1952-1954
- 238
Mollenhauer B, Bibl M, Esselmann H. et al .
Selective reduction of amyloid beta42 discriminates Alzheimer's disease from Huntington's
disease: indication for distinct pathological events in amyloid beta peptide aggregation.
J Neurol Neurosurg Psychiatry.
2006;
77
1201-1203
- 239
Hamacher M, Stephan C, Hardt T. et al .
Applications in brain proteomics: 8(th) HUPO Brain Proteome Project Workshop 7 October
2007, Seoul, Korea.
Proteomics.
2008;
8
1750-1753
- 240
Fang Q, Strand A, Law W. et al .
Brain-specific proteins decline in the cerebrospinal fluid of humans with Huntington
disease.
Mol Cell Proteomics.
2009;
8
451-466
- 241
Dalrymple A, Wild E J, Joubert R. et al .
Proteomic profiling of plasma in Huntington's disease reveals neuroinflammatory activation
and biomarker candidates.
J Proteome Res.
2007;
6
2833-2840
- 242
Leblhuber F, Walli J, Jellinger K. et al .
Activated immune system in patients with Huntington's disease.
Clin Chem Lab Med.
1998;
36
747-750
- 243
Singhrao S K, Neal J W, Morgan B P. et al .
Increased complement biosynthesis by microglia and complement activation on neurons
in Huntington's disease.
Exp Neurol.
1999;
159
362-376
- 244
Bjorkqvist M, Wild E J, Thiele J. et al .
A novel pathogenic pathway of immune activation detectable before clinical onset in
Huntington's disease.
J Exp Med.
2008;
205
1869-1877
- 245
Barrios F A, Gonzalez L, Favila R. et al .
Olfaction and neurodegeneration in HD.
Neuroreport.
2007;
18
73-76
- 246
Hamacher M, Stephan C, Eisenacher M. et al .
Maintaining standardization: an update of the HUPO Brain Proteome Project.
Expert Rev Proteomics.
2008;
5
165-173
- 247
Myers T, Law W, Eng J K. et al .
Installation and use of the Computational Proteomics Analysis System (CPAS).
Current protocols in bioinformatics.
2007;
Chapter 13: Unit 13–15
- 248
Luthi-Carter R, Hanson S A, Strand A D. et al .
Dysregulation of gene expression in the R6 / 2 model of polyglutamine disease: parallel
changes in muscle and brain.
Hum Mol Gen.
2002;
11
1911-1926
- 249
Tarditi A, Camurri A, Varani K. et al .
Early and transient alteration of adenosine A2A receptor signaling in a mouse model
of Huntington disease.
Neurobiol Dis.
2006;
23
44-53
- 250
World Federation of Neurology: Research Committee. Research Group on Huntington's
chorea. .
Ethical issues policy statement on Huntington's disease molecular genetics predictive
test.
J Neurol Sci.
1989;
94
327-332
- 251
Went L.
Ethical issues policy statement on Huntington's disease molecular genetics predictive
test. International Huntington Association. World Federation of Neurology.
J Med Genet.
1990;
27
34-38
PD Dr. med. Carsten Saft
Neurologische Klinik, Ruhr-Universität Bochum, St. Josef- und St. Elisabeth-Hospital
Gudrunstr. 56
44791 Bochum
Email: carsten.saft@rub.de